
working life of the turbines, and here the prediction of the behavior of solid material is 
particularly important. 

NOTATION 

~z, domain of spatial variables with boundary F; F, and F3, boundary segments parallel 
to Oz (inlet and outlet, respectively); F2, free surface; F~, bottom of contour; n, direc- 
tion of the exterior normal to the boundary of ~,; L and H, channel length and depth; x and 
z, horizontal and vertical coordinates; t', time; U and W, horizontal and vertical velocity 
components; c', impurity concentration; ~', hydraulic parameter; D x and Dz, turbulent-diffu- 
sion coefficients; F', source (sink) function; 0 ~ ~ ~ I, bottom-absorption coefficient; U,, 
dynamic velocity, Um, free-surface value of u; Uav , average value of u; c,, characteristic 
inlet value of impurity concentration; A,(A2), step size along 0x:(Ox2); ~ij, Kronecker 
symbol; k, Karman constant, 
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CHARACTERISTIC METHOD IN HEAT TRANSPORT IN FAST 

NONSTATIONARY PROCESSES 

V. A. Makagonov UDC 536.2 

The characteristic method has been used in numerical solution of a hyperbolic 
heat-transport equation. 

The following hyperbolic equation is involved in heat-transfer calculation for fast non- 
stationary processes of one-dimensional type: 

aT a2T a2T 
cp -~- + cp~ a~ = ~ 0x ~- ( I ) 

subject to the appropriate initial and boundary conditions. As a rule, the boundary condi- 
tions are nonlinear, and then there are major difficulties in obtaining an analytic solution. 
A network method (explicit difference scheme) has been used [I] to solve (1). Studies have 
been made [2,3] on the construction of difference schemes for equations of hyperbolic type 
on the basis of characteristic relationships, particularly with regard to the stability; 
here we show that the characteristic method can be applied in heat-transfer calculations for 
fast nonstationary processes. 

We first put 
OT OT 

V = ~ W =  Ox (1) 

T r a n s l a t e d  from I n z h e n e r n o - F i z i c h e s k i i  Zhurna l ,  Vol. 36, No. 6, pp. 1088-1092, June,  
1979. O r i g i n a l  a r t i c l e  submit ted June 21, 1978. 
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to reduce (1) to a system of first-order equations in new variables: 

a OW V OW OV 
= - - - - ;  = 0 .  

Xr Ox Xr Ox Ox 

OV 

(2) in vector form: We rewrite 

Ou + Aux = f, 
dx 

w h e r e  u i s  a v e c t o r  f u n c t i o n ;  A, a c o e f f i c i e n t  m a t r i x ;  a n d  f ,  a co lumn  v e c t o r .  

We now d e t e r m i n e  t h e  e i g e n v a l u e s  o f  A: 

det (A - -  ~I) = 0. 

H e r e  ~ a r e  t h e  e i g e n v a l u e s  and  I i s  a u n i t  m a t r i x ;  t h e n  

a 

"tr ltl ,~ = ::f:: ~ .  

(2) 

(3) 

(4) 

This means that the conditions governing hyperbolic systems are met: 
and different [4]. 

Equation (3) can be transformed to the following characteristic form: 

(5) 

the roots H are real 

k 

where ~k are the eigenvectors of A. 

The following are the components of the eigenvectors: 

~  

(6 )  

We write the initial system of (6) in terms of Riemann invariants: 

dPk =~f, k= I, 2, 
dr 

where Pk = ~k u are those invariants and 

dPl ~l f  V . dP2 =~f V 
d~ Tr dT ~r 

rt We introduce the variable P = Pa 

where 

and put the system in the form 

(7 )  

(8) 

p = ~u, (9) 

il' / 11 
The eigenvectors have been selected to be linearly independent, so ~ has an inverse ~~t; 

then from (9) we get the solution as 

u = f l - tp .  (1 O) 

We use ~-~ to get in terms of Riemann invariants that 

I 1 - -  
T 1/-  P'-P')II 

Then (8) is transformed with P: = P and P2 = R as follows: 
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= e + a .  
"dT"~/, 2 ~  ' k ~  2 = 2~r" (11 )  

A Krank-Nicholson scheme [5] is used to find the final solution in difference form. 

We introduce the following difference net in region D{0 < x < L, x ~ 0}, in which the 
temperature function T(x, r) is defined: 

L x~=ih, i = 0 ,  1, 2 . . . . .  n, n = - - ,  h = c o n s t > 0 ;  
h 

�9 tp=pAh, p = l ,  2 . . . . .  A x = c o n s t > 0 .  

We replace the derivatives in (I]) by the difference relations giving second-order 

error, and we then get the following for P~+Xand RP+~: 
x i 

P~+I--P~_t=--vI(P+R)If+'+(P+R),~-I]; 

R f  "~1 - -  R/P_f. i = - -  ,v [ (P  .]h R ) f + '  + (P -I'- R)IL, l. 

Then 

(12) 

p~+, = 1 [PL,  @- t - -  v ) - -  R~v-, (1 + ,~ ) - -  R~_;-, (1 - - v ) +  vPf4-tl; (l 3) 
1 + v  -i  

Ax 
'V  ~ - -  �9 

4"r r Rf +l = (v-t - -  1) Pf- i  - -  R~_, - -  (1 + v -1)/~/+' ; (I 4) 

The Riemann invariants are 

dT I' R= dx ,~ 
which  g i v e s  us an e x p r e s s i o n  f o r  t he  t e m p e r a t u r e s  of t he  i n t e r n a l  p o i n t s :  

AT (~+~ + p~_~). (I 5) Tf+'=rf q - T  

We take the boundary conditions as heat transfer in accordance with Newton's law; we 
assume that the heat-transfer coefficient is ~ = f(T), while the temperature of the environ- 
ment is Ten(T) = F(T), i.e., 

Z or(0 ,  x) +a(x)[Ten(x)--T(O, x)] = 0 .  (16) 
Ox 

We transfer from partial derivatives to total derivatives and use (ll) to get for k = 2 
that 

dx 21: r d'r 7z 
(17) 

dPd.r dRdx =2._b_b~, {[T (0, ~)--  Ten(~)] ~(~)- -  [Ten (~) P+R2 ] tz (x)}. 

We replace the derivatives in (17) by difference relations and solve the system to get 

[ ] 
T~+' - - ( ,-~ =(x)b ) ~(~)b 

4 1 + - -  - -  ~ ' r  - ] ' "  - -  A ~  

A~ 2 ~, 

2 (1 + v - t ) ( T ~ - - T ~ + ' ) - - / ~ 2 ;  

. . . .  T2) - -  P2, 
Av 

(~8) 
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0 / 2 I02FO 

Fig. 1. Temperature variation at 
several points on a plate of thickness 
20 mm for boundary conditions of the 
third kind (the solid lines are from 
numerical solution of (I), while the 
broken lines are from the solution to 
the heat-conductlon equation). 

where 

Here b = a//aT~ r. 

c = bA---L { ~  [ 2,~-, T~- - ( l -  2v-') R~-  ~ ] -- ~(.) T.n (,)l~ + ' -  
L A~ 

-=('r) Tr +' +[&(~) (T,~ -- Ten(~))l~--~(~) (T~,,(~) P + R  

Equations (18) allow one to calculate the temperatures at the boundary points at which 
the heat is input; the temperature at the unheated surface is taken as constant. Transfor- 
mations analogous to those performed above must be used in other cases. 

If a = const, the values of P and R are defined by the following expressions, along with 
the t~perature at the boundary: 

~+~ = 8h~r(l + ~) B 
9 

(~+ a~ [4~r (I + v)-- A~I 

R ~ + ,  1 ( R ~  - -  vP~2 - -  v R ~ )  - -  2 b A r B  " . 

A~ 
T~+'=T~2q-~ - (R~+'+Rg), 

where 

2h 2/'t (I + 'v) 

Figure 1 gives computer results from solving (I) subject to the boundary condition of 
(16) and for initial condition T(x, 0) = T o (solid lines) for the following intput data: 

= 17 W/m'deg K; c = 0.63 kJ/kg'deg K; p = 7.8 g/cm3; T r = 2.10 -I~ sec; T = 0-3 sec, with 
a(T) varying ]inearly from 5.76 to 8.06 kW/m2"deg K and Ten(T) varying linearly from 3000 to 
2000~ 

Figure 1 also shows for comparison results from solving the heat-conduction equation. 
with the above parameters and conditions (broken lines). Clearly, the two solutions differ 
only slightly. The results of [3] and the present ones together show that the'method and the 
difference scheme are stable. 

NOTATION 

X, thermal conductivity; c, specific heat; P, density; T, temperature; Tr, thermal-stress 
relaxation time; AT, time step; ~, heat-transfer coefficient. 
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COUPLED DYNAMIC THERMOELASTICITY PROBLEM FOR A HALF SPACE 

WITH THERMAL "MEMORY" 

V. L. Kolpashchikov and S. Yu. Yanovskii UDC 539.3 

The coupled dynamic thermoelasticity problem is solved for a half space endowed 
with thermal "memory." The properties of the generated thermoelastic waves are 
discussed. 

Chen and Gurtin [1], elaborating the general nonlinear theory of conduction of Gurtin 
and Pipkin [2], extended it to include strain in the medium. They derived nonlinear func- 
tional defining relations for the thermoviscoelasticity of bodies with thermal and strain 
memory, whereby the prior history of the variation of the thermodynamic and mechanical char- 
acteristics is taken into consideration: 

r (X, t) = W (At), a (X, t ) =  E (At), B (X, t) = N (A'), q (X, t) = Q (A'), ( l ) 

where h t = (F, T, F -t, ~t, ~t) is the thermal history of the process (l). 

In the present article, we investigate the one-dimensional coupled dynamic problem for 
a linear thermoelastic isotropic half space. After linearization of the system of defining 
relations (I) with regard for the laws of conservation of momentum and energy, we arrive at 
the following dimensionless system of equations for the temperature, stress, and displace- 
ment fields induced in the half space: 

OzO OO i ~, OO (x, ~--S) ds= OzO i 020~, T--s) ~u 
+ + - + , O x e n '  

0 0 

~u ~u O0 r ~ ? (s) O0 (x, �9 - -  s) ds, 
Ox 2 #r 2 Ox J Ox 

0 

~x= - - - - O + F  ?(s) O(x, x--@ds, (2) 
0x 

0 

~____!4 o.~ O - - r  ?(s) O(x, ~--  

0 

where 

x,01j = Dr f (A0), -- ~Stj = DoE (AJ. ~3 (81~8h~ + 6.8~D + • = De E (Ao). 

V. i. Lenin Belorussian State University. A. V. Lykov Institute of Heat and Mass 
Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 1093-I099, June, 1979. Original article submitted 
June 29, 1978. 

720 0022-0841/79/3606-0720507.50 �9 1979 Plenum Publishing Corporation 


